According to Samuel King, postdoctoral student in the University of Pittsburgh’s Learning Research and Development Center, using calculators in college math classes may be doing more harm than good. In a limited study conducted with undergraduate engineering students and published in the British Journal of Educational Technology, King has determined that our use of calculators may be serving as an alternative to an actual, deep understanding of mathematical material.

“We really can’t assume that calculators are helping students,” says King. “The goal is to understand the core concepts during the lecture. What we found is that use of calculators isn’t necessarily helping in that regard.”

King, along with co-author and director of the Mathematics Education Centre at Loughborough University,  Carol Robinson, conducted the study by interviewing 10 second-year undergraduate students who were enrolled in a competitive engineering program. The students were given a number of mathematical questions dealing with sine waves, which are mathematical curves that describe a smooth repetitive oscillation. To help solve the problems, the students were given the option of using a calculator instead of completing the work entirely by hand. Over half of the students questioned opted to utilize their calculators in order to solve the problems and plot the sine waves.

“Instead of being able to accurately represent or visualize a sine wave, these students adopted a trial-and-error method by entering values into a calculator to determine which of the four answers provided was correct,” says King. “It was apparent that the students who adopted this approach had limited understanding of the concept, as none of them attempted to sketch the sine wave after they worked out one or two values.”

After completing the work, King and Robinson interviewed the students about how they approached the material. One student who used the calculator stated that she had trouble remembering the rules for how sine waves operate, and found it generally easier to use a calculator instead. In contrast, however, a student who opted to complete the work without a calculator stated that they couldn’t see why anyone would have trouble completing the question, but did admit that it would likely be easier with a calculator.

“The limited evidence we collected about the largely procedural use of calculators as a substitute for the mathematical thinking presented indicates that there might be a need to rethink how and when calculators may be used in classes—especially at the undergraduate level,” says King. “Are these tools really helping to prepare students or are the students using the tools as a way to bypass information that is difficult to understand? Our evidence suggests the latter, and we encourage more research be done in this area.”

Given the small sample size used in the study, it is entirely possible that King’s findings are largely anecdotal in how our usage of calculators and understanding of mathematical concepts may positively or negatively correlate. However, King does stress that while all the evidence may not be in, his study does raise important questions regarding how, when and why students choose to use calculators, and in doing so, we may develop a more holistic approach to math instruction.